MC Key 1. B 2. D 3. A 4. B 5. E 6. C (Cancelled) -7. D- 8. E -9.---D-(Please refer to solution) 10. B (Cancelled) -11: C - 12. A 13. C 14. A 15. E 16. A 17. B 18. C

19. D

20. E

Without relative motion,	m_1 T
> M, M2, and M have the	F M m_2
same accolaction	Tuzg —
Along x -axis =	in the second control of the second s
$(M+M_1+M_2)\ddot{x}=F$	<u> </u>
$M_{i,X} = T$	<u> </u>
Along y-axis: T= mg -	— ③
$0, 2 \text{ and } 3 \Rightarrow (M+M, 4)$	$\frac{f \cdot M_2}{M_1} = \frac{f}{M_1}$
	141

Note that m_2 cannot be accelerated horizontally unless the string is inclined at an angle to the vertical, so that it can provide a horizontal force to accelerate m_2 .

$$T_x = m_2 a$$
$$T_y = m_2 g$$

$$\Rightarrow T = \sqrt{T_x^2 + T_y^2} = m_2 \sqrt{g^2 + a^2}$$

$$T = m_1 a \implies m_1 a = m_2 \sqrt{g^2 + a^2} \implies a = \frac{m_2 g}{\sqrt{m_1^2 - m_2^2}}$$

$$F = (M + m_1 + m_2)a = \frac{(M + m_1 + m_2)m_2g}{\sqrt{m_1^2 - m_2^2}}$$

If $m_1 >> m_2$, then

$$F\approx\frac{(M+m_1+m_2)m_2g}{m_1}$$

9 F = by	
2 Fr = 500 W	
f = (5 Ns/m)(v) - 0	
[FV = 500 W - 2]	
,	
$\frac{2}{D} \Rightarrow V = \frac{500W}{5 \text{ Ns/m}(V)}$	
•	
$v^2 = 500 \text{Mms}^{-1}$	
<u> </u>	
5 H 5/m V = 10 ms ⁻¹	
•	
	.,
	·
	· · · · · · · · · · · · · · · · · · ·
•	
	
	
	· ·

$ \frac{\lambda(1+\epsilon)}{1+\epsilon} = \lambda = \lambda $ $ \frac{1+\epsilon}{1+\epsilon} $ $ \frac{1-\epsilon}{1-\epsilon} $ $ \frac{1+\epsilon}{1-\epsilon} $ $ \frac{1-\epsilon}{1-\epsilon} $	Spacecraft Orbit	Venu ☼ Sun	Earth Orbit
4. $\frac{T_{\text{Endth}}^{2}}{1AU^{3}} = \frac{T_{\text{spacecro}}^{2}}{1AU + 0}$ $\Rightarrow T = 0.8 \text{ parameters}$ $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx$	<u>××××××××××××××××××××××××××××××××××××</u>	XXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	(XXXXX	

$\frac{\int T_1 \cos \alpha + T_2 \cos \beta - Mg = 0}{\int T_1 \sin \alpha - T_2 \sin \beta} = 0 \Rightarrow T_1 = T_2 \sin \beta$
TI sina - TE sing = 0 > TI = TE sing
sina
T since on the transfer of the
T2 sing cosx + T2 cosp - mg = 0
5WX
Te (sing asa + sina cosp) = mg sina
$T_2 \sin(\alpha + \beta) = mg \sin \alpha$
$T_2 = Mq sind$
Sim(X+B)
l l
Ti = mg sina sing
sin (x+B) sind
= Mg. sing
5in(X+8)
$T_i = M_i g$
$l_{\overline{12}} = M_2 q$
$\frac{1}{m_2} \frac{N_1 - \overline{\Gamma_1}}{T_2} = \frac{m_g \sin \beta / \sin(\alpha + \beta)}{m_g \sin \alpha / \sin(\alpha + \beta)}$
M2 T2 Ma sind/sin(d+B)
$=$ $5in \beta$
sind

(i) Initial condition

(ii) Just before collision with the ground

- (iii) After lower sphere collision from the ground
- (iv) Just after elastic collision between spheres

Momentum:	M2U2-M1U1 = M2U2 + M1V1	9 the
	8 MIN2 - MINI = 8 MIN2 + MIN!	
	81=-1 = 81, + 1!	
	$V_1' = 8V_2 - V_1 - 8V_2'$	v-Ve
	$= 7v_1 - 8v_2^{-1}$	
<u>,,,,,,,,</u>	(1)	
Energy:	$\frac{1}{2}M_{1}N_{1}^{2} + \frac{1}{2}M_{2}V_{2}^{2} = \frac{1}{2}M_{2}V_{2}^{12} + \frac{1}{2}M_{2}V_{2}^{2}$	1 m, V12
	$M_1V_1^2 + 8M_1V_2^2 = 8M_1V_2^2$	2 + MN12
	V12+8V2=8V2+1	V ₍ ¹ 2
	9 v ₁ ² = 8 V ₂ ^{1²} + (7 V	' - 81 ²) ₅
	72 V2 - 112 V1 V2	+ 40 V, =0
	$\Rightarrow V_{2}' = \frac{5}{9} V_{1} = \frac{5}{9} \frac{29(h-2a)}{9}$! = V, (rejected)
	$V_1' = \frac{23}{9}V_1 = \frac{23}{9$	(h-2a)
1.4	5a +	<i>f</i> ,
Maximum	Height = $5a + v_1^2 = 529$	(h-2a)
	28 81	

HKPhO2016 MC9

Let a_n = downward acceleration of the nth pulley

Let T_n = tension of the string hanging down from the nth pulley

Consider the forces acting on the second pulley. Since it is massless,

$$T_2 = \frac{T_1}{2}$$

Similarly, we can prove $T_n = \frac{T_{n-1}}{2} = \frac{T_1}{2^{n-1}}$

Consider the forces acting on the first mass. Using Newton's law,

$$T_1 - mg = ma_1 \Rightarrow T_1 = mg + ma_2$$

Consider the forces acting on the second mass. Its acceleration in the lab frame is $a_3 - a_2$. Using Newton's law,

$$T_2 - \frac{m}{2}g = \frac{m}{2}(a_3 - a_2) \Rightarrow \frac{T_1}{2} = \frac{m}{2}(g + a_3 - a_2) \Rightarrow T_1 = m(g + a_3 - a_2)$$

In general, consider the forces acting on the *k*th mass. Its acceleration in the lab frame is $a_{k+1} - a_k$. Using Newton's law,

$$T_{k} - \frac{m}{2^{k-1}}g = \frac{m}{2^{k-1}}(a_{k+1} - a_{k}) \Rightarrow \frac{T_{1}}{2^{k-1}} = \frac{m}{2^{k-1}}(g + a_{k+1} - a_{k}) \Rightarrow T_{1} = m(g + a_{k+1} - a_{k})$$

This equation holds up to k = n - 1.

Consider the forces acting on the last pair of masses (that is, those hanging on the nth pulley). Their acceleration in the lab frame is a_n downward. Using Newton's law,

$$mg - T_n = ma_n \Rightarrow \frac{T_1}{2^{n-1}} = mg - ma_n$$

Adding the n equations above,

$$\left(n-1+\frac{1}{2^{n-1}}\right)T_1 = nmg + m(a_2-0) + m(a_3-a_2) + \dots + m(a_n-a_{n-1}) + m(0-a_n) = nmg$$

Note that in summing the acceleration terms, the first term of each bracket cancels the second term of the following bracket.

$$T_1 = \frac{nmg}{n-1+2^{1-n}}$$

The acceleration of the mass hanging from the 1st pulley = $a_2 = \frac{T_1}{m} - g = \frac{1 - 2^{1-n}}{n - 1 + 2^{1-n}}g \to 0$

The acceleration of the lowest mass =
$$a_n = g - \frac{T_1}{m2^{n-1}} = \frac{(n-1)(1-2^{1-n})}{n-1+2^{1-n}}g \to g$$

Trajectory Equation:
$y = (+\tan \Theta_1)(x) - q(x^2).$
3 N3 CO301
P X = d cox of
$\frac{p \times = d \cos \phi}{y = d \sin \phi}$
<u> </u>
$\Rightarrow d\sin\phi = (\tan\phi_1)(d\cos\phi) - g (d^2\cos^2\phi)$
2V12 005201
sind co20, = sin0, cos0, cos0 - gd co30
24 ²
$d_1 = \frac{2V_1^2 \cos \theta_1}{\cos \theta_1} \sin \theta_1 \cos \theta_2 - \sin \theta \cos \theta_1$
7050
$= 2 \frac{V_1^2}{2} \cos \theta_1 \sin \left(\theta_1 - \frac{\zeta}{2}\right)$
g ws²4
Similary, dz = 2 V22 cosos sin(02 - 5)
g cost
3 /
$d_1 = d_2$, \Rightarrow $2V_1^2 \cos\theta$, $\sin(\theta_1 - \phi) = 2V_2^2 \cos\theta$, $\sin(\theta_1 - \phi)$
11/2 - 100 0 010 0
$\frac{\left(\frac{V_1}{V_2}\right)^2 - \cos\theta_2 \sin(\theta_2 - \phi)}{\cos\theta_1 \sin(\theta_1 - \phi)}$
13. (82A) 21N (A) - (D)
,

17.
Consider an equivalent case that the density of the balloon
is - 0.85 pair (Density of air), and neglect the offect
of air.
Helium Air Equipolent to
$\frac{1.2}{\rho = 0.18 - 1.2} \text{ pir}$
$P = 0.02 \text{ kg/s}^{-1}$
=-0.85 poin
Effative gravitational acceleration = - 0.85 g
Effective certifique acceleration = -0.85 a
$a = v^2 = (105 \text{ km/hour})^2 = 0.85 \text{ Ms}^2$
R 1000M
\Rightarrow tan $\theta = -0.85$ a
-0.85(8)
<u>~ 0.85</u>
9.8
$\Rightarrow \theta = tan' 0.85$
9.8/
= 5°
· · · · · · · · · · · · · · · · · · ·

Effective spring constant, k = k, + k, = 9 N/m.
Marinum compression
of spring 1 Equilibrium position
3 (3)
· ·
Maximum compression of Spring 1 occurs after 3 period,
=> The time that the block will take
= 3T
Ц.
$= 3 (2\pi) / M$
4 1 1
_ 3 (24)
4 19
= 17 Seconds
2
•

9. Center of
$$M_{ass} = \sum m_i x_i$$
 M
 $\sum m_i x_i = \pi r^2(r) + \pi \left(\frac{r}{2}\right)^2 \left(\frac{2r+r}{2}\right) + \frac{r}{2}$
 $+ \pi \left(\frac{r}{4}\right)^2 \left[\frac{2r+2}{2}\right] + 2\left(\frac{r}{4}\right) + \frac{r}{4}$
 $+ \pi \left(\frac{r}{8}\right)^2 \left[\frac{2r+2}{2}\right] + 2\left(\frac{r}{4}\right) + \frac{r}{8}$
 $+ \pi \left(\frac{r}{16}\right)^2 \left[\frac{2r+2}{2}\right] + 2\left(\frac{r}{4}\right) + 2\left(\frac{r}{8}\right) + \frac{r}{16}$
 $+ \pi r^3 \left[\frac{r}{16}\right] + \frac{r}{16}$

$$= \pi r^{3} \left[1 + \frac{5}{5}, \frac{13}{64} + \frac{29}{512} + \frac{61}{4096} + \cdots \right]$$

$$= \pi r^{3} \sum_{n=1}^{\infty} 8^{1-n} \left(2^{n+1} - 3 \right)$$

$$= \frac{160}{21} \pi r^{3}$$

$$M = \pi r^{2} + \pi \left(\frac{r}{2}\right)^{2} + \pi \left(\frac{r}{2}\right)^{2} + \pi \left(\frac{r}{8}\right)^{2} + \dots$$

$$= \pi r^{2} \left(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots\right)$$

$$= \pi r^{2} \left(1 + \frac{5}{2} + \frac{7}{4}\right)$$
Note: The mass proportional constant is omitted.

$$= \pi r^{2} \left(1 + \frac{1}{3}\right)$$

$$= \pi r^{2} \left(\frac{1}{3} + \frac{1}{3}\right)$$

$$= \pi r^{2} \left(\frac{4}{3}\right)$$

$$\Rightarrow Contac of Mass = \frac{160}{31} \pi r^{3} = 10 r$$

P MV = MV, + 2 MV459
$(1 h v)^2 = 1 h v v^2 + 1 (2h) v v^2$
$\frac{1}{2} \ln v^2 = \frac{1}{2} \ln v_{1} e^2 + \frac{1}{2} (2m) \sqrt{45} e^2$
O h r.
Solutions give:
· · · · · · · · · · · · · · · · · · ·
$\int_{\Gamma} \Lambda^{i\xi} = -1 \Lambda$
$\int_{1}^{2} \frac{V_{1}g}{3} = -\frac{1}{3}V$
<u> </u>
$V_{45} = \frac{2}{3}$
3
·
•
•

1. (b)
$$t_{T_1} = t_{A_1} + t_{A_2}$$

$$= \frac{1}{25h} + \frac{1}{25h}$$

$$t_{T_2} = t_{A_1} + t_{A_2} + \cdots + t_{A_6}$$

$$= \frac{1}{25h} + \frac{1}{42} + \cdots + t_{A_6}$$

$$= \frac{1}{25h} + \frac{1}{42} + \cdots + t_{A_6}$$

$$= \frac{1}{25h} + \frac{1}{25h} + \frac{1}{25h} + \frac{1}{25h}$$

$$= \frac{1}{25h} + \frac{1}{42} + \frac{1}{46} + \frac{1}{44} + \frac{1}{25h} + \frac{1}{25h}$$

$$= \frac{1}{25h} + \frac{1}{42} + \frac{1}{46} + \frac{1}{44} + \frac{1}{25h} + \frac{1}{25h} + \frac{1}{25h} + \frac{1}{25h}$$

$$= \frac{1}{125h} + \frac{1}{12} +$$

(a) $4R \cos^2 \theta - L \cos \theta = 4R (1 - \cos^2 \theta)$
,
8 R cos20 - L cos0 - 4-R = 0
$\cos\theta = L \pm \sqrt{L^2 + 128R^2}$
$= \frac{16R}{16R}$
16R
$\Rightarrow \cos \theta = \frac{L + \sqrt{L^2 + 128R^2}}{16R}$ $AB = 2R \left(\frac{L + \sqrt{L^2 + 128R^2}}{16R} \right)$
(b) When $L = 4R$, $COSO = 1$
1
\Rightarrow $\theta = 0^{\circ}$

[a) Consider the upper sphure, energy conservation gives

$$\frac{1}{2} MV^{2} + \frac{1}{2} \left[\frac{2}{5} Mr^{2}\right] \hat{\beta}^{2} + Mg(R+r) \cos \alpha = Mg(R+r)$$

$$V = \hat{\beta}r = (R+r) \hat{\alpha}$$

$$\dot{\alpha}^{2} = \dot{\beta} r^{2}$$

$$(R+r)^{2}$$

$$\frac{\dot{\gamma}^{2}}{2} + \frac{1}{5}r^{2} \hat{\beta}^{2} + g(R+r) \cos \alpha = g(R+r)$$

$$\frac{\dot{\beta}^{2}r^{2}}{2} + \frac{r^{2}\dot{\beta}^{2}}{5} + g(R+r) \cos \alpha = g(R+r)$$

$$\frac{\dot{\beta}^{2}r^{2}}{2} + \frac{r^{2}\dot{\beta}^{2}}{5} + g(R+r) (1-\cos \alpha)$$

$$r^{2}\dot{\beta}^{2} = g(R+r) (1-\cos \alpha)$$

$$\dot{\gamma}^{2} = \frac{10}{7}g(R+r) (1-\cos \alpha)$$

$$\dot{\gamma}^{2} = \frac{10}{7}g(R+r) \hat{\alpha}$$

$$V = (R+r) \hat{\alpha}$$

$$= \frac{10}{7}g(R+r) (1-\cos \alpha)$$

$$= \frac{10}{7}g(R+r) (1-\cos \alpha)$$

$$= \frac{10}{7}g(R+r) (1-\cos \alpha)$$

(b) $mg \cos \alpha - N = mv^2$ Upper sphere will detach from the lower sphere when N=0. 10 g (R+r) (1-65x) x 1 \Rightarrow $\cos \alpha = 10$ 17 $mg sin x - f = m\dot{y} \Rightarrow \dot{y} = g sin x - \frac{f}{m}$ Pr = 2 mr2 B $v = \dot{\beta}r = (R+r)\dot{\alpha} \Rightarrow \dot{v} = \dot{\beta}r = (R+r)\ddot{\alpha}$ $fr = \left(\frac{2}{5} \text{ mr}^2\right) \hat{\beta}$

$$fr = 2 mr^{2} \dot{\beta}$$

$$= \left(\frac{2}{5} mr^{2}\right) \dot{r}$$

$$= \left(\frac{2}{5} mr^{2}\right) \frac{1}{r} \left(\frac{9 \sin \alpha - f}{m}\right)$$

$$= \left(\frac{2}{5} m\right) \left(\frac{9 \sin \alpha - f}{m}\right)$$

$$= \frac{2}{5} mq \sin \alpha - \frac{2}{5} f$$

3.

(c)
$$\Rightarrow f = 2 \text{ mg sin } \alpha$$
 (Given)

Condition to slide: $f = \mu N$
 $\Rightarrow 2 \text{ mg sin} \alpha = \mu N$
 $\Rightarrow 2 \text{ mg sin} \alpha = \mu N$
 $\Rightarrow 2 \text{ mg sin} \alpha = \mu N$

Substitute ν using the results from (a),

 $\Rightarrow 2 \text{ sin} \alpha = \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$
 $\Rightarrow 2 \text{ sin} \alpha = 17 \mu N$

$$KE = \frac{1}{2} \frac{2m_1 R_1^2}{dt^2} \frac{d\theta^2}{2} + \frac{1}{2} \frac{2m_2 R_2^2}{dt^2} \frac{1}{dt^2}$$

$$= \frac{1}{2} \frac{2m_1 R_1^2}{4t^2} \frac{1}{2} \frac{d\theta^2}{dt^2}$$

$$= \frac{2m_1 R_1^2}{4t^2} \frac{1}{2} \frac{d\theta^2}{dt^2}$$

$$= \frac{2m_1 R_1^2}{2} \frac{2m_1 R_1^2}{4t^2} \frac{1}{2} \frac{d\theta^2}{dt^2}$$

$$= \frac{2m_1 R_1^2}{2} \frac{2m_1 R_1^2}{4t^2} \frac{1}{2} \frac{d\theta^2}{dt^2}$$

$$= \frac{2m_1 R_1^2}{2} \frac{2m_1 R_1^2}{4t^2} \frac{2m_1 R_1^2}{2} \frac{2m_1 R_1^2}{4t^2} \frac{2m_1 R_1^2}{2} \frac{2m_1 R_1^2}{4t^2}$$

$$= \frac{2m_1 R_1^2}{2} \frac{2m_1 R_1^2}{4t^2} \frac{2m_$$

Alternative Method to (b) and (c):

 $(h_1R_1^2 + h_2R_2^2)(d\theta)^2 - m_1gR_1(1-\cos\theta) + m_2gR_2(1-\cos\theta)$ = constant

 $\frac{\left(M_1R_1^2 + M_2R_2^2\right)\left(2\right)\left(\frac{d\theta}{dt}\right)\left(\frac{d^2\theta}{dt^2}\right) - M_1gR_1\sin\theta d\theta + M_2gR_2\sin\theta d\theta = 0}{dt}$

 $\frac{2(m_1R_1^2 + m_2R_2^2)(d^2\theta)}{dt^2} + g(m_2R_2 - m_1R_1)\sin\theta = 0$

 $\frac{d^{2}\theta}{dt^{2}} \approx -\frac{g(M_{2}R_{2} - M_{1}R_{1})}{2(M_{1}R_{1}^{2} + M_{2}R_{2}^{2})}$

 $\Rightarrow W = g(M_2R_2 - M_1R_1)$ $= 2(M_1R_1^2 + M_2R_2^2)$

 $T = 2\pi = 2\pi \left[\frac{2(m_1R_1^2 + m_2R_2^2)}{g(m_2R_2 - m_1R_1)} \right]$

(d) When MIRI > 0,

 $T = 2\pi \left| \frac{2 \operatorname{Mz} R_{2}^{2}}{g \operatorname{Mz} R_{2}} \right| = 2\pi \left| \frac{2 \operatorname{Rz}}{g} \right|$

	140							
1	The state of the s	4						
**		•	 Remove	this.	thin	thou	to	in-finity_
		/						
	\mathcal{I}				,			

Energy to remove a thin shell at badius r:

E = - GIMMM

where Mr = mass within the radius r=4 Tr3p

mr = Mass of thin duly at radius r and thickness or.

= -4 Tirpor (p=Dansity of the Sun)

Energy to remove the ith thin shell:

 $E_i = -\frac{6}{r} \left(\frac{4\pi r^3 \rho}{3} \right) \left(-4\pi r^2 \rho \times r \right)$

= G (4T) p2 1,4 xr

Etato = SEi

$$= \frac{(4\pi)^2}{3} \Leftrightarrow p^2 \stackrel{>}{\sim} \left(\frac{R_5}{N}\right)^4 \left(\frac{R_5}{N}\right)$$

[Suppose the Sun is divided into N thin shells,

· · · · · · · · · · · · · · · · · · ·
Frotal = (47)2 6p2 R5 E;4
3 N2 1
$= \frac{(4\pi)^2}{3} \frac{6p^2}{N^5} \frac{85}{30} \left(\frac{6N^5}{30} \right)$
$= (4\pi)^2 \in \rho^2 Rs^{5}$
3 5
= (470)2 G Ms /2 Rs5
3 (43 17 83) 5
$= 3 G_1 M_S^2$
5 Rs