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Hong Kong Physics Olympiad Lesson 7 

 

7.1 Rotational kinematics 

7.2 A comparison of linear kinematics and rotational kinematics 

7.3 Rotational kinetic energy and moment of inertia  

7.4 Torque and angular acceleration  

7.5 Static equilibrium  

7.6 Rotational work 

7.7 Angular momentum  
 

 

7.1 Rotational kinematics 

 

• Definitions of some useful quantities  

(a) Angular position θ = Angle measured from the reference line 

SI Unit: radian, which is dimensionless.  

θ > 0 counterclockwise rotation from reference line 

θ < 0 clockwise rotation from reference line 

1 revolution = 360
o
 = 2π rad   1 rad ~57.3

o
 

(b) Instantaneous velocity ω = Rate of change of angular displacement 

tt ∆

∆
=

→∆

θ
ω

0
lim    SI Unit: rad / s  

ω > 0 counterclockwise rotation  

ω < 0 clockwise rotation  

(c) Period T = The time to complete one revolution 

s=rθ 
r 

θ 
O 
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ω

π2
=T   SI Unit: second, s 

(d) Frequency f = Number of oscillation per second.  

T
f

1
=    SI Unit: s

-1
 

(e) Angular acceleration α = Rate of change of angular velocity  

tt ∆

∆
=

→∆

ω
α

0
lim   SI Unit: s

-2
 

 

7.2 A comparison of linear kinematics and rotational kinematics 

 

Linear Quantity Angular Quantity 

x 

v 

a 

θ 

ω 

α 

 

Linear Equation Angular Equation 

atvv += 0  
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tαωω += 0  
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2 θθαωω −+=  

 

Example  

Find the speeds of points A, B and C at the wheel, if the wheel is rotating without slipping 

with a uniform speed ω on the horizontal plane.  

ω 

v 
B 

A 

C 

 r 
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Answer: 

The speed of the wheel is  

v = ω r. 

The speed of point A: vA = ω r +ω r =2ω r. 

The speed of point B: ωωω rrrvB 2)()( 22 =+= . 

 

The speed of point C: vC = ω r − ω r = 0. 

 

7.3 Rotational kinetic energy and moment of inertia  

 

The kinetic energy of the rotating particle is 

given by  

22222

2

1
)(

2

1
)(

2

1

2

1
ωωω ImrrmmvK ====  

where I = mr
2
 is defined as the moment of 

inertia.  

For a rigid body, there are many particles 

rotating at the same time with the same angular 

velocity ω, the kinetic energy of it is given by  
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Axis of rotation 

Massless rod  
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where ∑=
i

ii rmI 2  is the moment of inertia of a rigid body.  

 

Rigid Objects of Various Shapes Axis of Rotation  Moment of Inertia 
Ring or cylindrical hollow  

 

Along the axis of cylinder 

 
I = MR

2
 

Disk or solid cylinder 

 

Along the axis of cylinder 
2

2

1
MRI =  

Hollow sphere 

 

Along the axis of sphere 
2

3

2
MRI =  

Solid sphere Along the axis of sphere 
2

5

2
MRI =  

Long thin rod Axis through the center of rod 
2

12

1
MLI =  

Long thin rod Axis through the rim of rod 
2

3

1
MLI =  

Solid plate 

(L: length of plate) 

Axis through center,  

in plane of plate  
2

12

1
MLI =  

Solid plate  

(L: length of plate, W: width of plate) 

Axis through center,  

perpendicular of plane of plate )(
12

1 22
WLMI +=  

 

If a disk rotates without slipping on a frictionless plane, then the kinetic energy K 

contains two parts: the translational kinetic energy Ktrans and the rotational kinetic energy 

Krot.  

22

2

1

2

1
ωImvKKK rottrans +=+=  

In the above relation, v = rω and I is the moment of inertia of the disk.  

 

Example  

 

A ball is released from rest at a height hA on a no-slip surface. After reaching its lowest 

point, the ball begins to rise again, this time on a frictionless surface, and climb up to a 

height hB. Compare the heights hA and hB.  
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Answer: 

As the region in the left hand side gives no slip to the ball, it should be a rough region. 

The velocity of ball relates to its angular velocity by the relation: v = r ω.  

By the conservation of energy, we have  

22

2

1

2

1
ωImvmghA += . 

As the curved region in the right hand side is frictionless, the angular velocity does not 

change and the rotational kinetic energy is kept constant. The translational kinetic energy 

is used to overcome the gravitation. Hence, we have 

2

2

1
mvmghB = .  

Or, we can conclude that AB hh < . 

 

7.4 Torque and angular acceleration  

 

Consider a mass m connected to an axis of rotation by a light rod of length r.  A 

tangential force of magnitude F is applied to the mass, and the mass is then rotated about 

the axis. According to Newton’s second law, the tangential acceleration a is given by  

m

F
a = . 

As the angular acceleration α relates the tangential acceleration a by  

hB hA 

Frictionless No-slip 
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r

a
=α . 

We have  

Imr

rF

mr

F

r

a τ
α ====

2
.  

 

That is, ατ I= , where Fr=τ . The unit of torque is Nm. Note that F and r are 

perpendicular to each other. In general, if F makes an angle θ with r, the component of F 

which is perpendicular to r will be account to the torque, e.g.   

)sin( θτ Fr= . 

 

Or, we can rewrite the relation again as Fr )sin( θτ = , where θsinr  is the perpendicular 

distance from the rotating axis to F.  

 

The torque τ relates the angular acceleration α and the moment of inertia I. This is 

analogous with the Newton’s second law (F = ma), for which the angular quantities and 

the linear kinematics have the following connection.  

 

Angular Quantity Linear Quantity 

α a 

τ F 

I m 

 

Axis of rotation 

Massless rod  

F 

α m 

r 

θ 

F sinθ 

Axis of rotation 

Massless rod  

F 

α 

m 

r θ 

r sinθ 

θ 
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Example  

 

A disk is released from rest at the top of an inclined plane. If the disk rolls without 

slipping on the plane, calculate the following.  

(a) The velocity of the disk when it reaches the lowest point of the inclined plane.  

(b) The angular acceleration α and the linear acceleration a along the inclined 

plane. 

(c) The time for the disk to roll down.  

 

Answer: 

  

 

By the conservation of energy, we have 

22

2

1

2

1
ωImvmgh += , 

where v = rω and I is the moment of inertia of the disk. That is  

22 )(
2

1

2

1

r

v
Imvmgh +=  

Now, we can calculate the velocity of the disk when it reaches the lowest point of the 

inclined plane.  
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I
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mgh
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We observe that the greater the moment of inertia, the smaller will be the velocity v. 

That’s why a ring (with the same mass and radius) obtains a smaller velocity, when it 

rolls down and reaches the lowest point of the inclined plane.  

Consider the forces along the inclined plane 

mafmg =−θsin     (2) 

As the friction provides a torque, which rotates the disk, we can write  

αIrf = ,     (3) 

where a = r α and α  is the angular acceleration of the disk. 

After solving (2) and (3), we obtain  

2

sin

mrI

rmg

+
=

θ
α      (4) 

I
mrI

mg
f

2

sin

+
=

θ
    (5) 

From (4), we observe that the greater the moment of inertia (N.B. for the same mass m 

and radius r but with different distribution of masses inside the rotating object), the 

smaller will be the angular acceleration of the rolling object when it rolls down the plane. 

The acceleration of the object is also smaller as a = r α. 

From (5), we can rewrite the equation as  

)(
sin

sin)(
sin 2

2

22

2
mr

mrI

mg
mgmrmrI

mrI

mg
f

+
−=−+

+
=

θ
θ

θ
.  

Hence, the frictional force will be greater, if the rotating object has a greater moment of 

inertia.  

Substitute the moment of inertia of the disk into (1), that is 
2

2

1
mrI = , we have  

3

4gh
v = , 

r

g θ
α

sin

3

2
=  and θα sin

3

2
gra == . 

The time for the disk to roll down is given by the relation atuv += , where u = 0 (the 

disk is at rest when it starts to roll). Hence,  

g

h
t

3

sin

1

θ
= .  



 9

Similar expressions can be obtained for a ring with the same mass and same radius. The 

moment of inertia of a ring is given by mr
2
. Substituting it into the above equation, we 

have  

ghv = , 
r

g

2

sinθ
α =  and 

2

sinθ
α

g
ra == . 

The time for a ring to roll down is given by the relation atuv += , where u = 0 (the ring 

is at rest when it starts to roll). Hence,  

g

h
t

θsin

2
= .  

Now, we can compare the time for disk and the ring to roll down the same distance. Of 

course, the time required for the ring to roll down the inclined plane of the same distance 

is longer.  

 

7.5 Static equilibrium  

 

Conditions for static equilibrium:  

• The net force acting on the object must be zero, 

.0,0 == ∑∑ yx FF  

• The net torque acting on the object must be zero 

.0=∑τ  

 

7.6 Rotational work 

 

The work done of a force F for a small displacement ∆x is given by  

W = F∆x.  

Since the small displacement ∆x is obtained by a small angular displacement ∆θ , we 

have ∆x = r ∆θ, hence  

W = F  (r ∆θ) = (F r) ∆θ = τ ∆θ. 

That is, the work done by a torque through a small angular displacement is given by  
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 W = τ ∆θ. 

 

Example  

 

The pulley is in the form of a disk and it 

rotates when m2 starts to move down from 

rest. Given that the pulley has mass M and 

radius r, and there is no slipping between 

itself and the string during rotation. If the 

table surface is rough and the frictional 

coefficient is given as µ, find the accelerations of each block. Find the tensions of the 

string at the two sides of the pulley. Determine the velocity and the time required for m2 

to reach the ground.  

 

Answer: 

 

By using the Newton’s second law, we obtain  









=−

=−

=−

amTgm

IrTrT

amfT

222

12

11

α  

 

Since f = µN, N = m1g, a = rα and 
2

2

1
MrI = , we can rewrite the above set of equations 

as 

1m

2m

h 

A pulley (a disk) 

of mass M and 

radius r 

rough surface 

gm1

a 

1T

N 

f 

a 

gm2

2T

T2 

T1 

α 
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











=−

=−

=−

α

α

αµ

rmTgm

MrrTrT

rmgmT

222

2

12

111

2

1
 

This is a system of equations with three equations and three unknowns. After solving, we 

obtain the angular acceleration of the pulley  












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
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−
=
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r

g µ
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The acceleration of blocks is given by g

mmM

mm
ra











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

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
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−
==
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2

1

µ
α . 

The tension T1 in the left hand side of pulley is  





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. 

The tension T2 in the right hand side of pulley is  



















++
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=
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1
2

1

mmM

mmM

gmT

µ

. 

By the conservation of energy, we can write down  

hfIvmvmghm +++= 22

2

2

12
2

1

2

1

2

1
ω  

The velocities of the two blocks are the same and v = rω, since the pulley has no sliding 

with the string. Substituting the moment of inertia of the pulley into the above equation 

and rearrange it, we obtain  


















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−
=

21
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2

mmM

mm

r

gh µ
ω . 

Hence, the blocks move with the same velocity given by   
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



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








++

−
=
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1
2

mmM

mm
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µ
. 

As the blocks move with acceleration a, the time required for m2 to reach the ground is 

related by the equation v = u + at, where u = 0.  That is  

tg

mmM

mm

mmM

mmgh


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)(2 µµ
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Rearrange again, we obtain the time t as 
gmm

hmmM

)(

2
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
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
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. 

 

7.7 Angular momentum  
 

Recall that torque is the moment of force, e.g. τ = rF, where r is the perpendicular 

distance of a point, say O, from F. Likewise, the angular momentum is defined as the 

moment of momentum, e.g. L = r(mv) = rp, where r is the perpendicular distance of a 

point of, say O, from v. 

 

 

Note that the angular momentum can be rewritten as moment of inertia times the angular 

velocity.  

L = r(mv) = r(mrω) = mr
2ω = Iω  Units: kgm

2
s

-1
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O 
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Rotational Quantity Linear Kinematics 

Torque: τ = r F = Iα Force: F = ma 

Angular momentum: L = r p = I ω Momentum: p = mv 

Torque: Rate of change of angular momentum, 
dt

dL
=τ  

(Recalled that 
dt

dω
α = ) 

Force: Rate of change of momentum, 
dt

dp
F =  

(Recalled that 
dt

dv
a = ) 

 

Since 
t

L

∆

∆
=τ , we have  

tLLL if ∆=−=∆ τ  

If τ = 0, we have ∆L = 0, that is Lf = Li. This is the so-called conservation of angular 

momentum. 

For linear kinematics, we have the conservation of momentum if there is no external 

force acting on the system, e.g. constant=∑ iivm . 

Similarly, we have the conservation of angular momentum if there is no external torque 

acting on the system, e.g. constant=∑ iiI ω . 

 

Example  

 

A small block m collides with a uniform 

vertical rod after sliding down a frictionless 

track. If the block sticks together with the rod 

and the whole system rotates about point O, 

find the maximum height that the block can 

climb. You may neglect the dimension of the 

small block.  

 

Answer: 

Frictionless track 

m 

O 

M θ 

h 

 l 
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The velocity of block m just before the collision can be found out by using the principle 

of conservation of energy   

mghmv =2

2

1
 

i.e. ghv 2=  

For the Collision: 

As all external forces (R, Mg, mg) pass through point O, and they give 

no external torque to the system, that is   

τ∑ =
ext

0 . 

Now, we apply the principle of conservation of angular momentum to 

discuss the collision. 

Before collision, the angular momentum about O is given by  

0 + l(mv) = l mv.  

After collision, the angular momentum about O is given by  

ωω )
3

1
()( 2

lMmVlImVl +=+ , 

where V is the velocity of the combined system just after collision, V l= ω , and I is the 

moment of inertia of the rod about O. Since the angular momentum before and after the 

collision are conserved, we have   

ω2

3

1
lMmVlmvl += . 

After plugging in V l= ω , one obtains  

ωω 22

3

1
lMmlmvl +=  

which gives 

)
3

1
(

2

)
3

1
( Mml

ghm

Mml

mv

+

=

+

=ω  

and 

Mm

ghm
lV

3

1

2

+

== ω . 

By the conservation of energy, one can write: Total loss in K.E. =  Total Gain in P.E.  

That is  

l 

O 

Mg 

mg 

2

l

R 

l 

O 

Mg 

mg 2

l

θ 

h1 

2

1h

Just after collision 

Maximum height that 

the system can climb up 
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22

1

2

1 1
1

22 h
MgmghImV +=+ ω  , 

where h1 is the maximum height that the block can climb up after collision and ω is 

obtained  before. After substituting expressions for I, V and ω into the above equation, we 

obtain   

 

)
2

1
()

3

1
(

2
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MmMm
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h

++

= .  


