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Hong Kong Physics Olympiad Lesson 8 
 

 

8.1 Periodic motion 

8.2 Simple harmonic motion  

8.3 Position, velocity and acceleration in S.H.M.  

8.4 Simple pendulum 

8.5 Energy of simple harmonic motion  

8.6 Damped and forced oscillations   

 

 

 

8.1 Periodic motion 

 

A motion that repeats itself over and over is referred to as periodic motion.  

Some useful quantities:  

• Period, T 

T = Time required for one cycle of a periodic motion  Unit: second 

• Frequency, f  

f = The number of oscillation per second   Unit: cycle s
−1

 = s
−1

 or Hz 

Note that T = 1/f. 

• Angular velocity, ω  

ω = Angular displacement per unit time  Unit: radian s
−1 

= s
−1

 

Note that 1 period → 2π, hence  

ω = 2πf  (In words, the angular displacement is 2πf radian per second) 

or 
T

π
ω

2
=  

• Angular displacement, θ  

θ = Angular displacement in time t  

θ = ω t 

• Amplitude = The maximum displacement (angular displacement) of the motion. 
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8.2 Simple harmonic motion  

F = 0 

x = 0 

x = 0 

v  = 0 

 Fmax 

x = A 

F = 0 

x = 0 

vmax 

F = 0 

x = 0 

 vmax 

x  = 0 

v  = 0 

 Fmax 

x = A 

Equilibrium position 

t = 0 

t = T 

t = 3T/4 

Fmax 

x = 0 x = −−−−A 

v  = 0 

t = T/2 

t = T/4 
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Hooke’s law states that the restoring force F is proportional to the displacement from its 

equilibrium position:  

F = −kx. 

 

The negative sign is appeared in the force equation, which shows that the restoring force 

and the displacement vector from the equilibrium position are in opposite direction. The 

equilibrium position is defined as the point where the net force acting on the vibrating 

mass is zero. For the above example, x = 0 is the equilibrium point.  

 

8.3 Position, velocity and acceleration in S.H.M.  

 

Let the projection velocity of the particle on AB as v which is a component of the 

tangential velocity vt of the particle. We label the radius of the circle, that is distance OA  

as A. 

  )(cos tAx ω=   (1) 

)(sin tAv ωω−=   (2) 

 )(cos2 tAa ωω−=   (3) 

Hence, we have )( 2222 xAv −= ω  and xa
2ω−= . Note that the latter equation is a 

second order differential equation in the form  

02

2

2

=+ x
dt

xd
ω  or 02 =+ xx ω&& . 

Note also that  

• xmax = A 

 O 

 A 

  N 
 P 

  x 

 ω 

 B 

 θ  vt  = ω A 

 θ 

 vt sin θ 
 vt  

 P 

 θ  ω 2
A 

 ω 2
A cosθ 

 P 

 O 
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• ωAv =max  and 2

max ωAa = .  

• From (1) and (2), we know that x and v differs by π/2.  

• From (1) and (3), we know that x and a are out of phase, that is if x is at its 

maximum, then a must be at its minimum and vice versa.   

For the motion of the spring-mass system mentioned above  

F = ma = −kx, 

which implies xa
2ω−= , where 

m

k
=ω  is the natural frequency of the system.  

The period of the system T is  

 
k

m

mk
T π

π

ω

π
2

/

22
=== . 

 

Remark: 

If a particle M is oscillating about the equilibrium position O and points A and B are the 

extremes of the motion, then we have the following signs for the dynamic quantities.  

 B  M  M  O  A  x(+)  x(−) 

 v(+) 

 a(−) 

 v(+) 

 a(+) 
M slowing down 

towards A 

 v(−) 

 a(−) 

 v(−) 

 a(+) 

M speeding up 

towards O M slowing down 

towards B 

M speeding up 

towards O 
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8.4 Simple pendulum 

 

We observe that the only force which points along the tangential direction is −mg sinθ. 

The negative sign indicates that the force is towards O while the displacement is 

measured along the arc from O in the opposite direction.  

−mg sin θ = ma 

For small oscillation, θ is small, sin θ ~ θ, but x = lθ, hence we have 

θ  = x/l  and ma
l

x
mg =−  

Now, xx
l

g
a

2ω−=−= , where 
l

g
=ω  is the natural frequency of 

the system.  

The period of oscillation T can be obtained by  

g

l

lg
T π

π

ω

π
2

/

22
=== .  

The whole calculation can be obtained by considering the torque of the system about O  

−l mg sin θ = ml
2α,  

where ml
2
 is the moment of inertia of the pendulum.  

Using the same arguments, we have −l mg θ = ml
2α, rearrange the equation, we obtain  

θωθα 2−=−=
l

g
   where 

l

g
=ω .  

 

Example  

A particle moving with S.H.M. has velocities of 4 cm/s and 3 cm/s at distances of 3 cm 

and 4 cm respectively from the equilibrium position. Find  

(a) the amplitude of the oscillation,  

(b) the period,  

(c) the velocity of the particle as it passes through the equilibrium position.  

θ 

mg 

mg sinθ 

mg cosθ 

θ l 

O 
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Answer: 

(a) We know that )( 2222 xAv −= ω , we can write down two equations by the given 

information and then solve for the two unknowns, A and ω respectively.  

)3(4 2222 −= Aω   (1) 

)4(3 2222 −= Aω   (2) 

Dividing (1) by (2) and then we have 
16

9

9

16
2

2

−

−
=

A

A
,  

which gives 5±=A .  

Since A is the amplitude, it must be positive, we have A = 5.  

(b) Obviously, we obtain, ω = 1s
-1

. 

Since sT π
ω

π
2

2
==  

(c) Plug in A = 5 and x = 0 into the equation )( 2222 xAv −= ω , we obtain the 

velocity of the particle when it passes through the equilibrium position.  

)05(1 2222 −=v  

15 −±= cmsv  

 

Example  

A light spring is loaded with a mass under gravity. If the spring extends by 10 cm, 

calculate the period of small vertical oscillation.  

Answer: 

For equilibrium, the downward force, that is, the weight equals the 

restoring force of the spring, kxmg = . 

Now we have 
x

mg
k = . 

Since the period of the oscillation is given by 
k

m
T π2= , hence we have  

s
g

x

k

m
T 63.0

8.9

1.0
222 ==== πππ . mg 

kx 

Equilibrium 
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Note that the period of the mass-spring system are the same, no matter what the 

orientation of the system is, horizontal, vertical or inclined. 

 

Example 

A particle of mass m is attached to one end A of an elastic string of modulus λ and natural 

length a. The other end of the string is fixed to a point O. The system is released from 

rest when A is vertically below O and the length OA is a. Show that the particle reaches 

its next position of instantaneous rest when its depth below O is 







+

λ

mg
a

2
1 . Show also 

that the particle moves with simple harmonic motion about a point at a distance 









+

λ

mg
a 1  below O.  

 

Answer:  

 

 

 

 b 

 A 

 O 

 Instantaneous at rest 

 T 

 a 

 A 

 O 

 Zero time 

 x 

 A 

 O 

 Time t 

 mg 
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We consider the conservation of energy, 2

2

1
b

a
mgb 








=

λ
, where b is the extension extra 

from its natural length. Note that 
a

λ
 has the same meaning as the force constant k in a 

spring. Now, we have 
λ

mga
b

2
= .  

The particle reaches its next position of instantaneous rest when its depth below O is 









+=+

λλ

mg
a

mga
a

2
1

2
.  

The equation of motion is xmTmg &&=− , where x
a

T
λ

=  and x&&  is the acceleration of the 

particle.  

The equation xmx
a

mg &&=−
λ

 gives gx
ma

x +−=
λ

&& . 

Rearrange the equation again, we have 







−−= g

ma
x

ma
x

λ

λ
&& .  

Making the substitution g
ma

xz
λ

−= , we have xz &&&& =  and  

z
ma

z
λ

−=&& . 

This is an equation for simple harmonic motion with 
ma

λ
ω =2 . The period is given by 

λ
π

ω

π ma
2

2
= . As z = 0 is the new equilibrium position, 0=−= g

ma
xz

λ
 gives 

g
ma

x
λ

= . The particle moves about the point 







+=+ g

m
ag

ma
a

λλ
1  below O.  

Remarks: 

Restoring force in an elastic string = 








a

b
λ , where a is the natural length of string and b 

is the extension. The modulus λ is the proportional constant which relates the restoring 

force and the fractional extension.   
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Example 

One end of a light elastic string, of natural length l and modulus of elasticity 4mg, is fixed 

to a point A and a particle of mass m is fastened to the other end, The particle hangs in 

equilibrium vertically below A. Find the extension of the string. The particle is now held 

at the point B at a distance l vertically below A and projected vertically downwards with 

speed gl6 . If C is the lowest point reached by the particle, prove that the motion from B 

to C is simple harmonic of amplitude l
4

5
. Prove also that the time taken by the particle to 

move from B to C is 
g

l
















+ −

5

1
sin

2

1

2

1 1π . 

Answer:  

At equilibrium, we have 







=

l

e
mgmg 4 , where e is the extension from the string’s 

natural length. Hence, we obtain 
4

l
e = .  

By the conservation of energy, we can write 







=+

l

b
mgmgbglm

2

)4(
2

1
)6(

2

1
. 

 E 

 b 

 C 

 A 

 Instantaneous at rest 

 T 

 x 
 E 

  A 

 Time t 

 mg 

 mg 

  e 

 B 

 l 

 A 

 Equilibrium position  

 E 

 )(4
l

e
mg  

 l 

 

gl6  

 A 

 Zero time 

 B 
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Simplifying the above expression, we have 032 22 =−− lblb  which gives 
2

3l
b = . 

The equation of motion is xmTmg &&=− , where 


















+

=
l

l
x

mgT 44 . 

Now, we obtain the S.H.M. equation x
l

g
x

4
−=&& . The motion from B to C is S.H.M. with 

amplitude 
4

5l
eb =−  and 

l

g4
=ω .  

The time taken to move from B to E is t1, where 









= 1

4
sin

4

5

4
t

l

gll
. Hence, we obtain 









= −

5

1
sin

2

1 1

1
g

l
t  .  

 

Remark: The above method is a short cut without talking about the phase of oscillation. 

In fact the displacement-time relation should be written as ( )δω += t
l

x sin
4

5
 which gives 

( )δω +=− )0(sin
4

5

4

ll
 when t = 0. Thus, we obtain 








−= −

5

1
sin 1δ . At t = t1, we have 

( )δω += )(sin
4

5
0 1t

l
 which gives δω += 10 t . Plugging in ω and the phase δ, we obtain 









= −

5

1
sin

2

1 1

1
g

l
t . 

The time taken to move from E to C is 
4

1
 period, i.e. 










=










=









g

l

g

l

44
2

4

12

4

1 π
π

ω

π
.  

The time taken to move from B to C is 









+






−

g

l

g

l

45

1
sin

2

1 1 π
, that is 

g

l
















+ −

5

1
sin

2

1

2

1 1π . 
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8.5 Energy of simple harmonic motion  

 

If the oscillation involves no dissipation in energy, e.g. friction, the summation of the 

kinetic energy and the potential energy becomes conserved, that is, the total energy is a 

constant. In the spring-mass system, we have the total energy E 

constant
2

1

2

1
... 22 =+=+= kxmvEPEKE  

Plug in x = A and v = 0, the constant E is obtained as  

2

2

1
kx  which equals 22

2

1
Amω . 

When we plot the graph K.E. against x, we find that it is a 

quadratic curve.  

22222222

2

1

2

1
)(

2

1

2

1
. xmAmxAmmvEK ωωω −=−== ,  

Recalled that the first term 22

2

1
Amω  is a constant.  

Note also that the graph P.E. against x is also a quadratic 

curve  

2

2

1
.. kxEP = .  

 

Example  

 

A bullet of mass m embeds itself in a block of mass M, which is attached to a spring of 

force constant k, just after collision. If the initial speed of the bullet is v0, find (a) the 

maximum compression of the spring and (b) the time for the bullet-block system to come 

to rest.  

 Energy 

 x 

 Total energy 

 K.E. 

 P.E. 

 A  0  −A 
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Answer: 

 

By the conservation of momentum, we have  

 vMmmv )(0 +=  

That is the combined velocity 
Mm

mv
v

+
= 0 .  

The kinetic energy of the system at that moment is 2)(
2

1
vMm + , which changes to 

elastic potential energy when the system comes to rest  

 22

2

1
)(

2

1
kAvMm =+ , 

where A is the maximum distance that the block and the bullet can move. 

Substituting the expression for v, we obtain 2
2

0

2

kA
Mm

vm
=

+
 and rearrange it, we have the 

amplitude A given by 
)(

0

Mmk

mv

+
. 

Since the system is a spring-block oscillating system, the period T is given by 

k

Mm
T

+
= π2 , hence, the time for the travels from just impact to instantaneous at rest 

is given by 4/T .  

M  m 

 v0 

M+m 

 v = 0 

 A 
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8.6 Damped and forced oscillations   

 t 

 x 

 Free oscillation 

 t 

 x 

 Under damping 

 t 

 x 

 Critical damping 

 t 

 x 

 Over damping 
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There are external forces which act on the system other than the restoring force. If the 

external force damps the system and dissipates the system’s energy, it is called the 

damping force. Example of this is the friction or the viscous force. The motion is then a 

damped oscillation. If energy is pumped into the system by an external force, the force is 

called by driving force and the oscillation is named as forced oscillation.  

 

When the driven force has its frequency equals the natural frequency of the system, the 

system is under resonance.   

 

Light damping 

Heavy damping 

Driving 

frequency 
Natural 

frequency 

Amplitude of 

forced 

vibration 


