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Hong Kong Physics Olympiad Lesson 10 

 

10.1 Static equilibrium in fluids: Pressure and depth 

10.2 Pascal’s Principle 

10.3 Archimedes’ Principle and buoyancy 

10.4 Continuity of fluid flow 

10.5 Bernoulli’s equation 

10.6 Surface tension 

10.7 Pressure difference across a curved surface 

10.8 Capillary rise formula 

 

10.1 Static equilibrium in fluids: Pressure and depth 

 

Consider a cylindrical container of cross-section area A, filled with fluid a height h. 

The top surface is at an atmospheric pressure Pat. At the bottom of the container (point 

b), the downward force is Fat plus the weight of the fluid.  
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where ρ is the density of the fluid. 

Hence, we obtain ghPP atb ρ+= . 

 

Remarks: 

You may note that one day while swimming below the surface of a river, you let out a 

small bubble of air from your mouth. As the bubble rises toward the water surface, its 

diameter increases. The reason is simple, since the bubble rises the pressure in the 

surrounding water decreases. The volume of air bubble thus expands.  

 

Example  

A U-shaped tube is filled mostly with water, but a small amount of vegetable oil has 

been added to one side. The density of the water is 1000 kg/m
3
, and the density of the 
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vegetable oil is 920 kg/m
3
. If the depth of the oil is 5.00 cm, what is the difference in 

level h between the top of the oil on one side of the U and the top of the water on the 

other side? 

 

Answer: 

Note that the pressure at point A is the same as that at point B. Hence we can write  

2211 ghPghP atmatm ρρ +=+  

That is 2211 hh ρρ = , or 
1

22
1

ρ

ρ h
h = . 

Plugging in the densities of water and 

oil as well as the height of oil in the U 

tube. We obtain h1 = 4.60 cm. 

Since h = h2 – h1 = 5.00 cm – 4.60 cm = 

0.40 cm.  

 

10.2 Pascal’s Principle 

 

Recall that if the atmospheric pressure is Pat, the pressure at a depth h below the fluid 

surface is ghPP at ρ+= . Suppose now, that the atmospheric pressure is replaced by a 

pressure PPat ∆+ , the pressure at the depth h is ghPPP at ρ+∆+= . Thus, by 

increasing the pressure at the top of the fluid by an amount, say, ∆P, we have 

increased it by the same amount everywhere in the fluid.  

Pascal’s Principle states that an external pressure applied to an enclosed fluid is 

transmitted unchanged to every point within the fluid. An example of Pascal’s 

Principle is the hydraulic lift, which is sketched in the following figure. The cross-

sectional area A2 is larger than A1. Suppose the piston 1 in the left cylinder is pushed 
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by a downward force F1, the extra pressure other than the atmospheric pressure at the 

fluid surface is 
1

1

A

F
P =∆ . This extra pressure is transmitted everywhere in the fluid. 

At the right piston, that is piston 2, an extra pressure of the same amount is exerted on 

it. And the force acting upward on piston 2 is  

22 )( APF ∆= .  

Note that the greater the area of piston 2 the greater will be the upward force. As a 

result, it is a good machine for lifting objects. Substituting the increase in pressure in 

the above relation 11
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volume of fluid moved in the left cylinder should be the same as that in the right 

cylinder. One has 2211 dAdA = . Hence, we obtain 1
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conclude that the force is inversely proportional to the displacement of the piston. 
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10.3 Archimedes’ Principle and buoyancy 

 

A fluid exerts a net upward force on any object it surrounds. This is referred to as a 

buoyant force. Archimedes’s Principle states that an object wholly or partially 

immersed in a fluid is buoyed up by a force equal in magnitude to the weight of the 

fluid displaced by the object.  

 

Example  

What fraction of the total volume of an iceberg is 

exposed? 

 

Answer: 

The weight of the iceberg is  

 gVW iii ρ= , 

where Vi and ρi are the volume and the density of the iceberg respectively.  

The volume of the submerged portion of the iceberg relates to the buoyant force  
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  gVF wwρ= , 

where Vw and ρw are the volume and the density of water which is displaced by the 

iceberg.  

At equilibrium, the upward and downward forces balance each other  

F = Wi. 

Hence, gVgV iiww ρρ =  and we obtain the volume ratio  
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ρ
= .  

Plugging in the densities of ice (917 kg/m
3
) and water (1000 kg/m

3
) into the above 

equation, we conclude that 8.3% volume of ice is above water.  

 

Example  

A piece of plastic with a density of 706 kg/m
3
 is tied with a string to the bottom of a 

water-filled flask. The plastic is completely immersed, and has a volume of 8.00 × 

10
−6

 m
3
. What is the tension in the string? 

 

Answer: 

The upward force is the buoyant force = Vgwρ . 

The downward forces are the tension of string plus the weight of plastic = VgT pρ+ . 

As the system is in equilibrium, the upward and downward forces balance each other 

e.g. VgVgT wp ρρ =+  which gives the tension of string  

VgVgT pw ρρ −= . 

Plugging in the densities of plastic and water, the volume of plastic and the 

gravitational acceleration 9.8 ms
−2

. The tension of string is 0.0231 N. 
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10.4 Continuity of fluid flow 

 

Imagine a fluid flows in a cylindrical pipe, the mass passing through the large pipe in 

a given time, ∆t, must also flow past the small pipe in the same time.  

 

 

The masses of fluid flow in the large pipe and the small pipe are 

tvAVm ∆=∆=∆ 111111 ρρ , 

and tvAVm ∆=∆=∆ 222222 ρρ  

respectively. 

As 21 mm ∆=∆ , we obtain 222111 vAvA ρρ = . If the fluid is incompressible, 21 ρρ = , 

we thus obtain 2211 vAvA = . 

 

10.5 Bernoulli’s equation 

 

The pressure acting on a moving fluid does work on it that appears as a net change in 

the kinetic and / or potential energy of the system; that is,  

 PEKEW ∆+∆=∆ . 

Consider the tube in the following figure, the pressure-force F1 = P1A1 acting on the 

fluid, pushing it in the direction of motion, does an amount of work on it, e.g. F1∆l1. 

In the same time, the fluid external to the tube pushes to the left with a force F2 = 

P2A2, which is opposite in direction to the displacement. Here, the liquid in the tube is 

doing work pushing on the surrounding fluid, and so the work done on it is F2∆l2. The 

net work done on the fluid sample is  
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Since the amount of fluid moved in a time interval ∆t is ∆V, which is given by 

tvAtvAV ∆=∆=∆ 2211 . 

Hence, we obtain the work done due to the pressure difference 

)( 21 PP
m

W −
∆

=∆
ρ

. 

 

 

The change in kinetic energy of the fluid in the tube is  

)(
2

1 2

1

2

2 vvmKE −∆=∆ . 

The change in gravitational potential energy arises because the shifting of all the 

molecules in the tube,   

)( 12 yymgPE −∆=∆ . 

By using the conservation of energy, PEKEW ∆+∆=∆ , we can write   
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m

−∆+−∆=−
∆

ρ
. 

After simplification, we obtain the Bernoulli’ equation 

2
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1
ygvPygvP ρρρρ ++=++ .  

Each term has the dimension of energy per unit volume, or energy density. That is the 

the sum of pressure-energy density (P) arising from the internal forces on the moving 

fluid, the kinetic-energy density ( 2

2

1
vρ ) and the potential-energy density ( ygρ ) is a 

constant. The sum is sometimes called the net energy density of the fluid.  
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Remark: 

If the pipe is horizontal, we have 2

22

2

11
2

1

2

1
vPvP ρρ +=+ . In other words, 

2

2

1
vP ρ+  is a constant. Greater the flow rate of fluid at a certain point, lesser will be 

the pressure acting on it. As a practical example, the lifting force on an aerofoil is the 

result of the pressure difference exerted on it.  

 

Another example is the net upward force on the roof when wind blows across the roof 

of a house. The lower pressure over the roof is accounted by the Bernoulli’s equation.  

 

Example 

 

Water flows through a garden hose that goes up a step 20.0-cm height. If the water 

pressure is 143 kPa at the bottom of the step, what is its pressure at the top of the step? 

Given that the cross-sectional area of the hose on top of the step is half that at the 

bottom of the step and the speed of the water at the bottom of the step is 1.20 m/s.  
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Answer: 

Assume that water is incompressible, the continuity equation states that  

2211 vAvA =  

Hence the velocity of water at the top of the step is smsm /40.2/20.12 =× . 

Using the Bernoulli’s equation  
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ygvPygvP ρρρρ ++=++ , 

which gives )()(
2

1
21

2

2

2

112 yygvvPP −+−+= ρρ . 

Plugging in P1 = 143 kPa, v1 = 1.20 m/s, y1 = 0 m, v2 = 2.40 m/s, y2 = 0.20 m,  and ρ = 

1000 kg/m
3
, we obtain the pressure at the top of the step, P2 = 130 kPa.  

 

Example 

Find the velocity of water as it emerges from the tip of a tank as shown in figure.  

 

Answer: 

This is a typical problem solved by the Bernoulli’s equation. Plugging in data, e.g. 

P1 = Pat, y1 = h and v1 = 0; 
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P2 = Pat and y2 = 0,  

the equation 2

2

221

2

11
2

1

2

1
ygvPygvP ρρρρ ++=++  

becomes )0(
2

1
)()0(

2

1 2

2

2
gvPhgP atat ρρρρ ++=++ . 

Hence 2

2
2

1
vhg ρρ = and thus ghv 22 = . 

 

10.6 Surface tension 

 

(a) Liquid drop 

A molecule in the interior of a fluid experiences attractive 

forces of equal magnitude in all directions, giving a net force of 

zero. A molecule near the surface of the fluid experiences a net 

attractive force toward the interior of the fluid. This causes the 

surface to be pulled inward, resulting in a surface of minimum 

area. Consider a drop of liquid, surface tension plays an 

important role for the formation of it.  

 

(b) Water surface 

Molecules in the surface of a liquid are farther apart 

than those in the body of the liquid, i.e. the surface 

layer has a lower density than the liquid in bulk. 

 

(c) Molecular explanation 

The intermolecular forces in a liquid, like those in a solid, are both attractive and 

repelling and these balance when the spacing between molecules has its equilibrium 

value. However, when the separation is greater than the equilibrium value (r0), the 

attractive force between molecules exceeds the repelling force. This is the situation 

with the more widely spaced surface layer molecules of a liquid. The attractive forces 

on either side due to their neighbours which puts them in a state of tension and thus 

the surface behaves like an elastic skin or membrane. When a small force is applied to 

the liquid surface it tends to stretch, resisting penetration.  

 

Water surface 
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(d) Definition of surface tension 

Consider a straight line of length l in the surface of a liquid. If the force acting at right 

angles to this line and in the surface is F, then the surface tension γ of the liquid is 

defined by  

l

F
=γ . 

In words, γ is the force per unit length acting in the surface perpendicular to one side 

of a line in the surface. It is temperature dependent and has an unit of Nm
−1

. At 20
o
C, 

for water γ = 72.6 ×10
−3

 Nm
−1

 and for mercury γ = 465 ×10
−3

 Nm
−1

. 

It should be noted that a thin film of soap or a bubble of soap has two surfaces, but the 

water drop has one surface. For example, the wire AB in the following figure is kept at 

rest by an external force F such that the surface tension force is balanced. As a film of 

soap has two surfaces and so the width of film contributing surface tension force is 2l 

and F = 2γ l. 

 

 

10.7 Pressure difference across a curved surface 

 

Consider a soap bubble in the following figure. The inward forces on the bubble are 

contributed by the atmospheric pressure P and the surface tension force. But these 
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forces are balanced by the force which is given by the pressure inside the bubble. As a 

result, this pressure exceeds the atmospheric pressure by p, and the magnitude of it is 

given by P+p. It is noted that the pressures inside (P+p) or outside (P) the bubble 

provide horizontal forces  

22 )()2(2 rpPrrP πγππ +=+  

24 rpr πγπ =  

r
p

γ4
= . 

Taking γ for a soap solution as 2.5 × 10
−2

 Nm
−1

, the excess pressure inside a bubble of 

radius 1.0 cm is Pa
m

Nm
p 10

100.1

105.24 1

2

2

=
×

××
=

−

−

−

. 

 

Example 

If the soap bubbles of different radii are blown separately using the apparatus as 

shown in figure. Now, taps T1 and T2 are opened, what is your observation? 

 

Answer: 

The smaller bubble A will decrease its size and the larger bubble expands. 

Equilibrium will be attained when the two bubbles have the same radii. That bubble A 

becomes a curved film and bubble B has a larger radius.  
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10.8 Capillary rise formula 

 

Consider a fluid in a capillary tube, the fluid rises up to a height h due to the pressure 

difference across the curved fluid surface in the tube. Assume that the meniscus (fluid 

surface) is in the form of spherical shape and the pressure difference at E and D is 

r
p

γ2
= . Of course, pE is greater than pD, since E is curved downward. The point C is 

at a depth h under D, the pressure at C, i.e. pC, exceeds pD by ρgh.  

gh
r

p

ghpp

E

DC

ρ
γ

ρ

+−=

+=

2   

As pE is at an atmospheric pressure, gh
r

pp atmC ρ
γ

+−=
2

. At equilibrium, pC = pA = 

pB = patm. Hence we can write  

atmatmC pgh
r

pp =+−= ρ
γ2

  or 
r

gh
γ

ρ
2

= , 

The height of fluid h is given by 
gr

h
ρ

γ2
= . 

Remarks:  
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Example 

A U-tube with different limb diameters is shown in figure. At equilibrium, water with 

level difference is observed in the two limbs. Given that the surface tension of water 

is  7.0 × 10
−2

 Nm
−1 

and its density is 1000 kgm
−3

. If the contact angle is zero between 

water surface and the limbs, what is the difference in water level.  

 

Answer: 

Since the surfaces of water is curved downward, we conclude that  

pB > pA and pD > pC. 

Mathematically, we have  

Pa
r

pp AB 56
2/100.5

)100.7(22
3

2

=
×

×
==−

−

−γ
, 

and Pa
r

pp CD 140
2/100.2

)100.7(22
3

2

=
×

×
==−

−

−γ
. 

But, pB = pD = patm, the pressures pA and pC can be rewritten as  

Papp atmA )56( −= , 

and Papp atmC )140( −= . 

Now, the difference between pA and pC is due to the water column of height h, 

ghpp CA ρ=− . 

Plugging in the expressions of pA and pC, we obtain ghpp atmatm ρ=−−− )140()56( , 

which gives Pagh 84=ρ . 

The difference in water levels is given by  
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